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Abstract. A separable billiard system in the hyperbolic strip, a particular realization
of the hyperbolic plane, is investigated. We oconsider a rectangle bounded by straight
fines in the hyperbolic strip as an approximation of either a regular octagon with area
A = 4x, or of a hyperbolic rectangle bounded by geodesics, respectively. Due to the
simple geometry of our approximation the Schrodinger equation is scparable, and leads
to simple transcendental equations for the eigenvalues in terms of Legendre functions.
The statistical properties of the eigenvalue spectrum are investigated and checked, with
respect o Weyl's law, level spacing, number variance and spectral rigidity, respectively.
In particular the numerical results for the spectral rigidity are in close agreement with
the semi-classical theory of Berry.

1. Introduction

In recent years billiard systems have become increasingly popular. This i, of course,
due to the accessibility of more powerful computers. Of special interest have been
systems which allow the considerations of trace formulae. Let us consider a two-
dimensional system. Take a test function h(p) = h(-p), decreasing faster than
1/|p|® for |p| — oo and which is holomorphic in some appropriate strip Im(p).
The motion of a classical particle in this two-dimensional system can described by its
orbits. The trace of the propagator of the corresponding quantum system means that
(in the sense of the semi-classical approximation) only the periodic orbits are relevant.
Such trace formulae (Gutzwiller [1]) have provided powerful techniques in analysing
the classical and quantum properties of chaotic billiard systems (see Friedrich and
Wintgen [2], Sieber [3] and Sieber and Steiner [4] and references therein).

In the study of such billiard systems on Riemann surfaces, i.e. on compact polygons
on the Poincaré upper half-plane H (Lobachevsky plane, hyperbolic plane) one is
naturally led to the Selberg trace formula [5,6] which is, however, an exact formula,
Endowed with periodic boundary conditions these systems are highly chaotic (ergodic)
and serve as an important example in the study of quantum chaos {quantum chaology
[71). Auwurich et al [8,9] have achieved for these particular systems a great deal
of understanding, such that these systems can be understood as being numerically
solved, including coming closer to an answer to the question ‘Can one hear the shape
of a drum?’ [10,11]. Another important billiard system is Artin’s billiard, which has
an application in the theory of the early universe [12]. Here similar results could be
obtained [13].
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In this paper I want to study a particular approximation of a hyperbolic polygon
in the hyperbolic strip (see figure 1). It is constructed as follows. Let us start with
the Poincaré upper half-plane which is defined as

H={({=x+iylzceR,y >0} (L.1)

endowed with the hyperbolic metric ds* = (d%z + d%y)/y®. By means of the Cayley
transformation

~iz 41 —C +i

= porag) z=.171+I1:1;2= C i

(12)

the Poincaré upper half-plane is mapped onto the Poincaré disc with metric g,, =
[2/(1 — r})] diag(1, 7%} (r? = 2 + z2), and by means of

n=X+iY =—In(-i¢) =2tan' 2z (1.3)

onto the hyperbolic strip with metric g,, = 6,,/cos?Y.
The study of classical and quantum motion in hyperbolic spaces emerges from
three considerations.

(1) Hyperbolic spaces can serve as a model in cosmology [12, 14)].

(2) Hyperbolic spaces play an important role in string theory [15], in particular in the
mathematical theory of Riemann surfaces required in the multiloop expansion
(D’Hoker and Phong [16]) in the Polyakov approach [17] to perturbation theory.

(3) Motion in hyperbolic space in (compact or non-compact) domains with periodic
boundary conditions serves as an example for quantumchaos (Gutzwiller [18],
Steiner [19]).

Usually the classical motion in a finite domain in hyperbolic geometry is chaotic.
Consequently the quantum motion reflects some of the chaotic properties of the
chaotic classical motion, e.g. there is in general level repulsion. However, are there
simple models which are nevertheless separable and resemble some properties of
hyperbolic space? Let us for example consider the motion in a bounded domain
in a hyperbolic geometry where the boundaries are geodesics (with zero curvature).
The everywhere negative curvature of hyperbolic space now causes that near lying
geodesics to diverge exponentially in time evolution, i.e. they have a positive Lya-
punov exponent. This means that the property of the space defocuses the classical
trajectories (e.g. [20,21]). However, if it is possible to choose boundaries which have
a focusing property then it may be possible that the defocusing property of the hyper-
bolic space and the focusing property of the boundaries interact in such a way that
the system remains separable and non-chaotic. The billiard system presented in this
paper has exactly this property.

From the particular form our rectangle in the hyperbolic plane has, one could
hope to gain some information about the (at least ground state) energy levels of the
(classically chaotic) hyperbolic octagon with periodic boundary conditions. However,
Aurich et al [8,9] have actually solved the corresponding Schrodinger equation nu-
merically for symmetric as well as asymmetric octagons [9] and therefore one can
only compare results now and see if the integrable system resembles some properties
of the chaotic one. Furthermore, there is a numerical study of hyperbolic triangles
embedded in the regular octagon in the Poincaré disc with Dirichlet and Neumann
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Figure i. {g} Tesseiaiions in ihe Hyperbolic Sirip. \:‘3) Tesselations in the Poincar upper

half-plane: The equivalent of (q) transformed onte ‘H. The boosts in the T y-direction
for the octagon are hardly visible due to their enormous scaling. (c) Tesselations in the
Poincaré disc: The equivalent of figure 1{(a) transformed onto D.
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boundary conditions, respectively, by Balazs et af [22,23]. Nevertheless the idea re-
mains to study billiards in unusual settings, e.g. the one presented here which serves
as an example of a separable quantum billiard in hyperbolic geometry, see also Gra-
ham et af [24] for an integrable approximation of a cosmological billiard (Artin’s
billiard).

The further contents of this paper are now as follows: In section 2 I will describe
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the ‘rectangle approximation’ in some detail and set up the quantization condition.
Weyl's law for the various parity classes, respectively Dirichlet and Neumann boundary
conditions, are formulated in order to check the increase of the number of energy
levels with increasing energy.

Section 3 contains the numerical results and an investigation of the statistical
properties of the calculated energy levels.

The forth section contains a discussion and a summary.

2. The system

Let us start with a description of the system which I call ‘a rectangle in the hyperbolic
plane’. In figures 1(a—) I have displayed how the rectangle in the three realizations
of the hyperbolic plane looks alike. In the hyperbolic strip it consists of two vertical
straight lines which are geodesics (solid lines), and two horizontal straight lines which
are not geodesics (dotted lines). In figures 1(b) and 1(c), respectively, it is also
displayed how this rectangle looks like in the Poincaré upper half-plane and the
Poincaré disc (dotted lines), respectively, and how the hyperbolic strip, the Poincaré
upper half-plane and disc are tessalated by the symmetric octagon and hyperbolic
rectangles (see below), respectively.

I also have displayed the regular octagon which corresponds to a Riemann sur-
face of genus two, the simplest Riemann surface tesselating the hyperbolic plane.
The regular octagon can be conveniently constructed in the Poincaré disc with eight
guarter-circles described by [22]

@1
~Zgag? F=/3V2+1) P =4/ L(VZ=1)

which give rise to the eight generators of the symmetric octagon in the Poincaré disc
[8,9,22]

cosh %"- sinh -‘%"-e”"’/q
T = (sinh _I_,zne—ikr/‘i cosh %n ) (k=0,1,2,3) (2.2)

including the inverse v; ', with cosh £ = cot £ = 1+ 2 = 2.414213562...
L, is the length of the shortest closed periodic geodesic in the regular octagon [8].
From the geometry is it clear that the area of a rectangle in the hyperbolic strip is
given by

X Y dxXdy
A= / ] Sy = (X, = X,)(tan ¥ — tan ¥;) @.3)

with some numbers (X, X;,Y,,Y;). Since the vertical lines coincide with the
corresponding lines of the regular octagon, we choose as — X, = X, = L,/2 with
L, given by

(1+\/\/§-1
Ly=2In | YY" 2

= 3.057141839.... 2.4)
1- ﬁ—1)
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From the definition of a rectangle (—L,/2, Ly/2] x [-Y,, ;] we have several pos-
sibilities in choosing a particular one. One can either choose for Y, the point ¥,
given by the right upper corner of the octagon, the point Y given by the maximum
value of the variable Y the octagon takes on in the strip, the point Y, given by the
minimum value of the variable Y the octagon takes on in the strip, or by some inter-
mediate value Y, given if the area of the rectangle equals, say A = 4w. Whereas
the separability of the rectangle in the hyperbolic strip is obvious, the separability in
the Poincaré upper half-plane and the Poincaré disc, respectively, is not so obvious.
However, some particular polar coordinate systems (r, ¢) do exist.
Explicitly these values are given by

_ V2 N\ _ 1143717740,
v2-1,

V241
Y, =tan 1 { XYX2 1. | =1.384478273...
P (1—1/\/5

Y, =tan~! (

T+1- — —si
Yo =tan™? VV2+1-VV2-1(cosw—sinw) ) _ 944046056,
1-v2+cosw
w=sin"! (V2-1D)V6-2v2 -2 = -0.307422594 ...
7—22
-1 27r
Yy = tan N =1.117959030.... (2.5)
0

We have Y, < Y, < Y, < Yp. The two horizontal lines in figure 1(a) of the
rectangle are not geodesics. It is nevertheless possible to construct a hyperbolic square
bounded by geodesics. We consider the rectangle in the Poincaré upper half-plane
and look for the arcs of a circle connecting the points ¢, = e*/2(sin Yy +icos Y;)
and ¢/, = e~Lo/?(sin Y, +icos Y,). The circles described by (z F z,.)? + 3 = r?
with

cosh %’1 cosh® —‘%9- 1 "6
., = — =] ——— .
r sin }/(] T Si]’lZ}% ( )

do the job. The emerging domain in H can be seen as generated by the matrices

{ elal2 0\

n=\ o e-—Lo/2)
2.7
1 (cosh Lo sinY, )
Yy = - :
2 ﬁoshz LG —sinY, sin ¥, cosh %‘1

On the ieft-hand side in figures 1(a-c) I have dispiayed the action of applying the
boosts of equation (2.2) to the fundamental domain of the regular octagon. Also
shown is the ‘rectangle approximation’. On the right the two-fold action of the
generators of equation (2.7) is shown, Due to the general formula for a polygon
in the hyperbolic plane A = [(V — 2)x — J_ a], where V denotes the number
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of vertices and « the corresponding angles (e.g. [22]), we get for the area of the
hyperbolic square generated by the matrices (2.7)

1+e‘L“)

a =Y, +tan™! (tan Y, - an 2y,

(2.8)

A=4tan™! e -1 .
V2elo(z2 4 r2) —e2Lo — 1

which gives o = 0.490923447..., A = 4.319491516... for Y, = Y}, with the
parameters ¢, = +2.684818117..., r = 2.491635672.. ., respectively. We can
not expect that the ground state energy levels for the hyperbolic squares should be of
comparable size with those of the square and the octagon due to the large difference
in their geometry and area < 4.

For reasons of practicability and simplicity we now make the choice

Y, = Y, = tan™! (2Lo) 2.9

and denote by the notion ‘rectangle in the hyperbolic plane’ the rectangle in the strip
bounded by the four straight lines as described above. This particular choice makes a
reasonable compromise as to the total number of levels which can be calculated within
the region of stability of the numerical investigation by a simple Fortran program.
Also the width and length along the X- and Y -axis of this square are almost equal.

In order to set up our quantization conditions and Weyl’s law we must discrim-
inate between four parity classes in the hyperbolic rectangle and the lengths of its
boundaries. The rectangle is symmetric with respect to the X- and Y -axis, hence we
get the four classes P, = (+,+), P, =(+,~), Ps=(—-,+)and P, = (—,-).

Let us set up the quantization condition. The free wavefunctions in the entire
strip are given by [25]

¥, (X,Y) = \/ psinh rpcosY ol X pir

in ¥’ 2.10
7 (cosh?nk 4 smbZap)C -2 Y) (210)

which are normalized solutions of the Schrédinger equation (i = 2m = 1)
—cos?Y (8% +82)¥(X,Y)= E¥(X,Y). (2.11)

The energy spectrum is E = p? + 2 1 and I have used dimensionless units. Even and
odd parity with respect to the X- coordmate yield the quantization condition with
respect to the X -dependence

or(l+
even: cos Lok, =0—-k = M l=0,1,2,... {2.12)
2 L,
!
odd: sin%=o—>kl=%”— 1=1,2,3,.... @2.13)
Q

Even and odd parity with respect to the Y-coordinate then give the quantization
conditions

even: PP o(sinYy) + PIo o(~sin¥) =0 (2.14)
odd: PP, (sinYg) = P o(—sin ¥y) = 0.. (2.15)
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The last two equations are ranscendental equations for p,, n = 1,2,... and must
be solved numerically. Actually one uses the representation

1 1+ sin Y\'?/?
{(1—ip) \t —sinY
. l—sinY)
n—

xzﬂ(%—ik,%+ik;l—l 3

Piif-uz(Si“ Y)=
(2.16)

and omits the 1/I"(1 — ip)-factor. The energy of the nthlevel finally has the form

_ 2 41
E,=p.+3 (2.17)

Let us first concentrate on the (—,—) case, the others are similar, of course.
Ao hawva A frar Vo UV m all maes Alncoac Wiael?e law: &1 Aacrrihac
¥Y¥% avwe 1 — ﬂ. lUl IU — .(M l.ll all IJQIJ.I.J LAAIIVD. "UJI.B MAYY {LUJ LW LIV WD

the mean of the number of energy levels up to.a certain. energy, ie. N(E) =
{# N(levels with energy E) E < Ep}. According to Baltes and Hilf [27] and
Stewartson and Waechter [28] (for earlier results and generalizations see Baltes
[29], Brownell [30], Kac [11] and Waechter [31]) one obtains for a two dimensional
quantum system with Dirichlet boundary conditions on all boundaries (e.g. following

123,24])

[ 4 3 1r

N(E) = iE___\/ +___Z T %
4 o, T

. corners

12wf K(")d""’-— Aﬂ(&)ds+0(%). (2.18)

Here «, denotes the angle of the rth corner, A the area of the system and 0A the
length of its boundary. Here K is the Gaussian curvature (here K = —1), d%o the
surface integral, and the boundary mean curvature « is given by

K(s) = =20°(5) g0y (5) ' (s). @19)

n(s),t(s) is the normal {tangential) vector along the boundary, and the covariant
derivative D /Ds is given by

D d dn? dib dn

mna(s) = 15 ds Ii(s )

(2.20)

¢ is the Christoffel symbol. In the case where one considers the shifted Laplacian
—A —1/4 the E-independent terms in V( E) change into [23]

¢ = .2% (5‘ - _) fj K(o)d% — —f x(s)ds (2.21)

This suffices for our purposes. Using the general formula for the length of a curve
in a curved space

t
s = f V91182 + g29% + g 80 dt (2.22)
ti
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we obtain for the length of the boundary of a quarter rectangle

3A=2]n(_1__ﬂ}i)+£‘2£(1+ ! ) (2.23)

cos Yy cos Y,

Note that the vertical lines are geodesics and therefore their length can also be
cvaluated by the two-point formula in the strip

cosh(X" — X')

H A
cosh d(¢", ') = cos Y/ cosY"

~—tan Y tan Y”. (2.24)

We have o, = 7 /2 (r = 1,2, 3,4) and therefore for the (X, Y") (odd, odd) states

- Ljtan Y, VvE 1 + sin Y} L 1
(=1=) ~ 0 0 —_ 9 0 -0
N(E) = 8= E 4 [..]n ( cos Y, ) t (1 + cosYn)]

1 1 Lytany)
+ 4 48 + 192 cos? Y, (2.25)

where we have allowed some arbitrary Yp. Similarly for (X,Y") (odd, even) states

ﬁ(E)(""‘)::LUtanYDE—f[an(l-l-smm)-{-ﬁ( 1 _1)]

8 cos Y; 2 \cosY;
1 LO tan }/0
T 48 + 192cos? Yy’ (2.26)
For { X V) {even, odd) states
AY ? FARY ? Fo—
- Lytan Y, L 1 1 L,tan Y,
+-) 87 0p O 7 VE - —4 202 0 27
N(E) - 8w E 8 (cos Yo + 1) E 48 + 192 cos? Y, (227

_ 1 LytanY,
(+.4) o ZobaN Ty D QIWE = e 020 0 28
N(E) - 8w E 8r (cosYD 1) E 48 + 192 cos? Y (228)

For the entire square, of course, we have

;:r(E) ~ LD tEl._YOE _ E [4 In (ﬁ__ﬂ.}i\
27 4 | \ cosY, )
2L, 1 1 Lytan Y] 229
+cosYo}+Z_ﬁ+48c082Y0' (229)

Hence the odd parities in X and Y, respectively, give Dirichlet boundary conditions
on the lines Y = 0 and X = 0, respectively, and even parities X and Y, respectively,
give Neumann boundary conditions on the lines ¥ = 0 and X =0, respectively.
Of course, the Schrodinger equation restricted to our particular rectangle is not
invariant with respect to translations in the Y -direction (it is in the X-direction).
The Schrodinger operator is only invariant with respect to elements of a Fuchsian
group, i€, generators of hyperbolic polygons tesselating the hyperbolic plane.
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3. Numerical results

The following table shows the first 25 levels for the parity classes (~,~), (—,+),
(+,-) and (+,+), respectively. The last figure may be uncertain, The energy
levels are ordered according to increasing energy, of course, and in addition I also
display the corresponding quantum number-pairing (I,n) arising from the X- and
Y -quantization condition of the transcendental equations for p.,, respectively.

A more comprehensive list of energy levels shows that we have level cluster-
ing (degeneracies or almost degeneracies) which are expected for separable systems
{compare the short enumeration in table 2). There is also an asymptotic behaviour of
the Legendre functions which give for p — oo and fixed k; the solution of equations
(2.14) and (2.15) (independent of k;)

inY. -1
p, = 2m[1n (liﬂu)] = 2.139942066 ...

1 Sil‘l Y (n < N’ pn - CX)) (3'1)
- 0

which is nicely confirmed by the data,

Tuble 1. The first 25 levels £ 70, BV B ang E(GHY)

BT (1 n)

EG ()

EWF=(1,n)

EGP 1, n)

E; = 7.5219(1,1)
E, =14.638(2,1)
E; = 21.340(1,2)
Eq = 25.131(3,1)
E; = 29.366(2, 2)
Es = 38.038(4,1)
Er = 42.999(3,2)
Es = 44.220(1,3)
Es = 52.118(2,3)
EIO - 53.020(5, 1)
En - 61.589(4,2)
Elz = 65.593(3,3)
Ey3 = 70.000(6,1)
E_u = 76.269(1,4)
E15 == 83.689(5,2)
B = 84.107(2,4)
E; =85.049(4,3)
EIS = 88.931(7, 1)
Eyg = 97.349(3,4)
Egg = 103.24(5, 2)
E; =109.80(8,1)
Eqp = 110.55(5,3)
Esy = 116.27(4,4)
E2 = 117.48(1,5)
E3s = 125.29(2,5)

E, = 4.8994(1,1)
E; = 13.368(1,2)
Es = 13.672(2,1)
Ey = 22.071(2,2)
Es = 24.992(3,1)
Es =31.633(1,3)
E; = 38.026(4,1)
E3 = 38.366(3,2)
Es; = 39.596(2,3)
Eyo = 53.019(3,3)
Ey1 = 53.445(5,1)
E2 =59.099(1,4)
E1a = 60.084(4,2)
E1s = 66.961(2,4)
Ejs = 69.996(6,1)
Eg = T74.736(4,3)
Ej7 = 80.296(3,4)
Es = 83.451(5,2)
E;o = 88.931(7,1)
Epy = 95.729(1,5)
E;; = 99.500(4,4)
E;; =103.55(2,5)
Eja = 104.65(5,3)
Eq = 108.22(6,2)
E,s = 109.80(8,1)

E, =5.6255(0,1)
E, = 10.575(1, 1)
Ey =19.373(0,2)
E, =19.539(2,1)
E; = 24.656(1,2)
Ey = 31.315(3,1)
FE; =35.493(2,2)
Ey = 42.267(0,4)
Es = 45.277(4,1)
EIO = 47.493(1,3)
Ey, = 51.760(3,2)
Ey, = 58.134(2,3)
E); = 61.261(5,1)
By = 72.287(4,2)
Ej5 = 74.321(0,4)
E\g = 74.552(3,3)
Ei7 = 79.220(6,1)
Eig = 79.525(1,4)
Eyg = 90.038(2,4)
Eyo = 95.691(5,2)
E;, =97.078(4,3)
Ej2 = 99.126(7,1)
Ezy = 106.08(3,4)
Eqy = 115.54(0,5)
Eqy = 120.73{1,5)

b

Ey = 2.4360(0, 1)
E: = 8.7781(1,1)

By = 11.365(0, 2}
E, = 16,848(1,2)
Es = 19.136(2,1)

Egs = 29.283(2,2)
E; = 25.675(0,3)
Eg = 31.272(3,1)
Ey = 34.925(1,3)
Eyo =45.274(4,1)
En = 45.723(2,3)
E; = 48.841(3,2)
Ey3 = 57.149(0,4)
E;y =61.261(5,1)
Ejy = 62.362(1,4)
E s = 63.008(3,3)
Bz =T71.645(4,2)
Eis =72.926(2,4)
Eg = 79.220(6, l)
Fog = 88.740(4,3)
Ez] =89.131(3,4)
E22 = 93.783(0’5)
Eqoy = 95.610(5,2)
Eay = 98,981(1,5)
Eyy = 99.126(7,1)

For E_,, < 1000 we have # N(~~) =229, #N(—+) = 237, # N~} = 240,
# N(++) = 246. The ground states for the four parity classes are E{F' = 2.4360,
ESTY) = 4.8994, ESHT) = 5.6255 and E§T7) = 7.5219, respectively, with E{T)

ao th A

Taeinae haina lawal
as ine 1owest piiig i€velL



4582 Ch Grosche

Note the proximity of the lowest three eigenvalues to the lowest two eigenvalues
E3* = 3.8388, E® = 5.353 of the regular octagon [8] (which are however three-
fold and fourfold degenerate, respectively). The additional corners in the hyperbolic
plane of the regular octagon hence do not increase the value of its ground state too
significantly which is due to 4°* = 4.

The check with Weyl's law confirms the data nicely down to the lowest ¢igenvalues.
The staircase (or step function}) N(E) (solid line) and Weyl’s law (dotted line) are
hardly distinguishable. See figure 9 for an enlargement. Let us consider

6. = #(levels) — N(E)-0.5. 3.2)

The accumulated mean values of & (solid line) are consistent with zero, with fluctua-
tions |6} = O(10~?) about zero as shown in figure 4. Note the large fluctuations &,
(dotted lines) of the actual step function about the mean value described by Weyl's
law. This feature of large fluctuations is well known in integrable systems. Chaotic
systems are typically smoother.

In figure 2 I have displayed for all four parity classes the step function and the
corresponding Weyl’s law, respectively.

N(E) NIE)

250.0 T T T T 250.0 T
2000 R 2000 ]
1200 r E . 150.0
100.0 F - 100.0
50.0 3 k 50.0 F R
0.0 4 1 L L 3 0.0 L 1 L L E
<0 2000 400.0 60G.0 800.0 1000.0 0.0 200.0 4009 600.0 800.0 1080.0
Step funciion (odd,odd) Step funclion (odd,even)
N(E) HIE)
2500 - T T T . 250.0 T T T
200.0 F 1 200.0
150.0 F - 150.0 F B!
100.0 ol 4 10¢0
50.0 - 50.0 1
0.0 . . . . £ 0.0 L L i . £
0.0 200.0 400.0 600.0 800.0 1000.0 0.0 200.0 4000 &00.0 800.C 1000.0
Step funclion (even,odd) Step function (even,sven}

Figure 2. Step-function and Weyl’s law of the calculated energy values for the four parity
classes, ie E(—=), E(=+) (top), E(+:) and E(++) (bottom).
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Table 2. Some almost degenerate energy levels

4583

EG ) (1,m)

ES Y, n)
L]

EG=(1,n)

E (1, m)

Egg = 141.10(6,3)
Eag = 141.25(5,4)
Eas = 299.14(9,4)
Fge = 299.19(12,2)
Eg = 421.21(15,2)
Es3 = 421.32(18,1)
E131 =4 57784(3,11)
E132 = 577.93(13,5)
El3; = 586.72(7,10)
E]_ag = 58684(9,9)

Egy = 366.57(8,7})
Egy = 366.62(9,6)
Eis = 160,00(5,5)
Ei; =160.11(7,4)
FEgg = 421.21(15,2)
E97 = 421.32(]8, 1)
Es = 507.87(1,11)
Ej19 = 507.88(6,10)
Eyo, = 515.93(2,11)
Eh2 = 515.99(12,5)

Egn == 269.68(9,3)
E31 = 269.87(7,5)
Ey; = 363.00(8,6)
Eg; = 363.15(16,1)
Ej36 = 586.29(3,11)
E\ 37 = 586.37(18,2)

E;; = 144.68(9,1)
E3s = 144.77(1,6)
Egso = 252.58(6,6)
Eg: = 252.60(7,5)
Egg = 363.11(3,9)
Egg = 363.15(16,1)
Ej4 =573.33(14,7)
EHI = 573-37(21, 1)
El'“ = 716.31(6,12)
P17y = 716.35(18,3)
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Figure 3. Deviations 6n from Weyl's law for the four parity dasses, ie E(—=), B(—+)
(top), E¢++—) and E(+4) (bottom).

A first analysis now gives the level-spacing distribution P(S) of spacing between
neighbouring levels. Classically integrable systems belong to the universality class of
uncorrelated level sequences. P(S) is calculated for the scaled energy spectrum,
which has a mean level spacing of one (= h). One applies Weyl’s law onto the
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calculated energy levels and obtains the normalized levels E! by
E, = N(E,) (3.3)

and quantities for the scaled spectrum are denoted by a prime in the following. In
integrable systems one typically has level clustering, which is expressed by P(S) — 1
as S -+ 0, whereas chaotic systems show level repulsion, ie. P(S) — 0 as § —
0. The functional form of the nearest neighbour level spacing P(S) for classically
integrable systems has the form

P(Sy=e"% (3.49)

which is a Poisson distribution, whereas the result from random matrix theory for the
level spacing distribution of a GOE ensemble is approximated by a Wigner distribution

P(S) = gse-*s’/‘* (3.5)
and the corresponding level spacing distribution of a GUE-ensemble is given by
32 —45% /%
P(S) = Fsﬂe A (3.6)

Figure 4 shows the analysis of our system and the consistence with a Poisson distri-
bution (dotted line) is evident. The corresponding level spacing distributions for GUE
(Gaussian unitarian ensemble) is denoted by the dashed line, and for GOE (Gaussian
orthogonal ensemble) by the dashed-dotted line. Clearly GUE and GOE distributions
are excluded.

A similar feature was first observed by Casati er o/ [32]) for the flat rectan-
gular billiard. With the chosen A S, the actual level distribution shows never-
theless fluctuations about the Poisson distribution. Making A S smaller would in-
crease these fluctuations. The calculated x?-test gives values for AS = 0.2 (0.1)
x? = 30.8 (57.2) (0odd,odd), x> = 36.6 (56.0) (odd,even), x* = 19.6 (47.5)
(even, odd), and x? = 28.1 (54.1) (even, even), respectively, which gives confidence
levels o = 0.17 (0.23) (odd, odd), o = 0.05 (0.26) (odd,even), o = 0.71 (0.57)
(even,o0dd), and o = 0.26 (0.33) (even, cven), respectively. This shows that the
actual distribution is reasonable Poisson. Note the difference to e.g. [32] where in
spite of the fact that there were some 100 times as many energy levels taken into
account, the emerging level statistics had negligible confidence level.

We can also study the integrated level spacing

5
1(S) = f P(1) dt 3.7
0
which yields a useful statistics even for a small sample of level spacings. This gives
Dogmon(S) = 1-¢7%  Igop(S) =175/ (3:8)

and a non-analytical expression for I5yg(S). Figure 5 shows good confirmation of
the data with Poisson distributed energy levels.
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Figure 4. Nearest level spacing distribution P(S) for the four parity classes, ie E{~=),
E(=%) (top), E(+~) and E(H+) (bottom).

The level spacing distribution P(S) is a short range statistics. Another important
tool in the analysis of the spectrum is the number variance £?(L) and the spectral
rigidity Ag(L) [33), respectively. T2(L) is defined as the local variance of the
number n( E’, L) of scaled energy levels in the interval from E' — L /2 o E'+ L /2.
It has the form

THL)y=(n(E',L)- L?). (3.9)
The A, statistics of Metha and Dyson [33] is defined as the local average of the

mean square deviation of the staircase from the best fitting of a straight line over an
energy range corresponding to L mean leve! spacings, namely

1 Lf2 2
A3(L)=<min-—/ de[N'(E' + €) - a — be] > (3.10)
(a) L J_pse
It can be expressed as
r 12

11 fLJ2 1 pLj2
A D =% ]| deNHE |2 ] deNY(E'+e¢
3(1) <L-/——L/2 NE + ) [Lj-sz ( )j
L L 2
_12[1—2,] deN'(E’+e)] > (3.11)
2

-L/
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Figure 5. Integrated level spacing distribution 7(S) for the four parity classes,
ie E(=), B(=4) (10p), E(+:7) and E+:4) (bottom).

As the number variance, it characterizes long-term correlations of the energy levels.
Both statistics are related by

L
Ay(L) = L%/u ds(L3 - 2L%s — s*)E2(s). (3.12)

Whenever L « 1, the very fact that N(F) is a staircase leads in this limit to [35]
TS =1L A (L)y=L/15 (3.13)

and both statistics are linear and show the so-called Poisson behaviour, ie. in the
case of a genuine Poisson distributed level sequence, these results are exact.

The spectral rigidity gives, therefore, no information about the very finest scales
corresponding to the spacings between neighbouring levels, whether they are Poisson
distributed or not. Its usefulness lies in the way it describes level sequences larger
than the inner energy scale (L = 1) of a system. Berry [35] has developed a semi-
classical theory of the spectral rigidity and has shown that one must discriminate
between at least three universality classes of rigidity, depending on whether one deals
with classically integrable systems or classically chaotic systems. The first universality
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class occurs for classically integrable systems. Here the Poisson L/15-form for the
spectral rigidity extends from L =0to L,,,. L., corresponds to an outer energy
scale o< 1/T},;, (the inner energy scale corresponds to L ~ 1), where T, ; is the
period of the shortest classical orbit and L., o AV~!, and o 1/k for N = 2
(i.e. a two-dimensional system). The properties of the rigidity are determined by the
contributions of the very short orbits. These orbits have a non-universal behaviour,
which differ from system to system. As a consequence of the fact that there is a
shortest orbit, the spectral rigidity saturates and approaches a non-universal constant
A, as L — oo (and the same line of reasoning is true for the number variance £?)
[3,9,35). .
The number variance for a GOE distributed sequences is given by {33, 34, 36]

SUL) = %{103(27:1:) Fa+14 —;—Siz(wL) ~ 5 Si(rL) - cos(2n L)

- Ci(2nL) + nﬂL[1 - %Si(%rL)] } (3.14)
and for GUE-distributed sequences [3, é, 34, 36), respectively,
£2(L) = %{ log(27wL) + v + 1 — cos(2x L) — Ci(27L)

+ 7L [1 - %Si(?wL)] } (3.15)

Results for the spectral rigidity are obtained via the relation (3.13).

Let us consider the entire square in the hyperbolic plane. First of all, we see
that all predicted features in fact occur. The x2-test however gives for P(S), x? =
77.9, x* = 118 and x? = 290 for AS = 0.25,0.20 and 0.10, respectively, with
confidence levels of o = O(10~") and smaller, with respect to a Poisson distributed
sequence which is negligible. Let us note that the superposition statistics according
to [37] gives no improvement in the confidence level.

The number variance and spectral rigidity approach their L- and L /15-behaviour,
respectively, for L — 0. For L large, the number variance starts oscillating about a
mean value and the spectral rigidity approaches a saturation value. This is true for
all symmetry classes and for the analysis of the entire square as well.

We can explain our results in terms of the periodic orbit theory of Berry [35].
Of course, L, is the length on a closed periodic orbit which corresponds to motion
along the X -axis. L, with L, = 2In[(1 +sin ¥})/(cos ¥;)] = 2.936147388... is
the length of an orbit along the Y-axis and is slightly shorter than the former one.
However, these two shortest closed orbits are almost equal such that we can apply
Berry’s theory of the spectral rigidity in its simplest way.

For a classically integrable system the spectral rigidity approaches for L > L
a value A_, which is given by A, = constant x V&, where £ denotes the scaled
energy range over which the spectral rigidity has been evaluated. In the case of a flat
square with sides ¢ = b =1, A_, can be evaluated as

A~ 7 52[¢(2)B8(3) - 1¢(3)]VE = 0.0047VE. (3.16)

Similarly, L., =~ V7€ According to e.g. [3,9] this gives a prediction for the
number variance £2(L) for L > L__,, ie. £ = 2A_, + O(1/L?) (Ructuations
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Figure 6. Number variance £2(L)for the four parity classes, i.e E(==}, E(=+) (top),
E(+=) and E(H1) (bottom).

neglected, this behaviour explains why X? saturates much faster than A,, see below).
Assuming now that our square can be further approximated by a flat square with sides
a = Ly~ b= L, we obtain the following quantitics for the (0odd,odd) eigenstates
of the square in the hyperbolic plane with # N = 229 calculated energy values (A,
. are lower bounds)

L., =27 Ttheory ~ 2. 874 Afheory ~ 1,437, (3.17)
The numerical results are
LM ~ 2,454 AR~ 1.182. (3.18)

with Z00™ — 2A7Y™ ~ 0,09. Here X5u™ is determined by taking the mean value of
Z(L) above L = 10. In order to determine A""™, a fit of the numerical result with
the ansatz

a b
Ay(L)= A (1 -7 ﬁ) L>L,., (3.19)
is made with ¢« = 0.0002081 and & = 43.90, respectively. In figures 6 and 7, I
have indicated the theoretical values by dotted lines and the numerical values by
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Figure 7. Rigidity A3(L)for the four parity classes, ie E(— ), E(=+) top), E(+:-)
and E(+:%) (bottom).

dashed lines, respectively. The theoretical crossover value L_ .. =~ 27 is clearly
distinguishable, ic. where the L/15-behaviour changes into the saturation value.
Considering the quite rudimentary approximations the results are very reasonable.
Note that only for the (odd,odd) parity class statements can be made, because this
is the only pure Dirichlet-Dirichlet billiard. We also see that in the (odd, odd) case
the theoretical value is too large which shows that here our approximation of two
almost equal shortest geodesics along the X- and Y -axis is not very good. The fact
that A (L) becomes a very slowly increasing function for L — oo indicates that the
level sequence becomes a rather regular sequence. From equation (3.1) we know that
the sequence of energy levels for E — oo is in fact a regular sequence and therefore
rigid.

Of course, we can repeat our considerations for the entire square with all parity
classes. Here the predictions are

~ 55 ytheory o & g4 Atheory 9 9o
~ 55 Liheery ~ 5,84 ~2.92,

o~
L
(]
'

L
max

The numerical results are (X02™ is the mean value for L > 20)

LM~ 6,66  AM™ ~3.118 321
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Figure 8 Analysis for the entire square.

and the fit parameters for AQX™ are @ = 4.650 and b = 170,24, respectively. Here
roum _ 2AMM ~ (.43, In figure 8 I have indicated the theoretical values by dotted
lines and the numerical results by dashed lines. All features are repeated. Whereas
the agreement with the theoretical and numerical values for the spectral rigidity give
very good results (compare the (odd,odd) case), the actual number variance lies
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Tuble 3. The spectral rigidity and Berry’s theory

N Lmax A8 Ama Amax/VE Aw  AwfVE

100 17.1 0.947 0.825 0.083 0.825 0.083
200 25.3 1.350 1.50 0.105 1.49 0.105
o 306 1.634 1.82 0.105 1.85 0.107
400 35.3 1.885 213 0.106 2.15 0.108
500 40.0 2.118 2.29 0.102 2.32 0.104
600 434 2.318 2.28 0.093 2.35 0.096
700 46.9 2.503 2.25 0.085 2.35 0.089
800 50,1 2.676 2.72 0.096 2.80 0.090
900 53.2 2.840 2.85 0.095 3.10 0.101
952 54.7 2.920 2.925 0.095 3.12 a.10
N(E)
560 0 r : .
s200 ’ 4
4800 | : 1
4400 | ]
4000 | o 1
360.0 - 1 L L E
400.0 450.0 500.0 550.0 600.0

Flgure 9. Detail of Weyl's law.

above the theoretical expectation.

In table 3 T have listed the comparison with the numerical results for the spectral
rigidity and the theoretical predictions 3 la Berry for the entire square. A maximum
of 952 levels have been taken into account with E < 1000. In the first column I have
indicated the number of energy levels N ~ £ taken into account for the calculation
of the spectral rigidity, in the second column L _,, according to L., =~ v'xE, in
the third A_, according to equation (3.16), in the forth the numerical result for
the calculated maximum A ., = A;(100) of the spectral rigidity, in the fifth the
resulting quotient of A, and V£, and in the sixth and seven the analogue of
the former two columns for the corrected numerical A,,. Our numerical results
are in agreement with Berry’s theory. The mean value for A, /VE is given by
0.097 £ 0.003, whereas for A /v€ by 0.099 £ (.003, in excellent agreement with
the theoretical value 0.0947. Note that A%Y™ gives somewhat larger values, which can
be explained by the fact that our rectangle in the hyperbolic geometry is a distorted
geometrical object with only almost equal sides (L, =~ L,, see above), whereas the
semi-classical theory for the spectral rigidity of Berry deals with a flat square.

Figure 9 shows an enlargement of the step-function. We can clearly see the
excellent agreement with the prediction of Weyl's law. Also we can see the periodic
fluctuation about it, a very typical feature of separable systems.

4. Discussion and summary

In this paper I have discussed a particular quantum billiard in the hyperbolic strip in
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the form of a rectangle, consisting of two vertical and two horizontal straight lines.

The motivation for an investigation of this model was threefold.

(i) To study a separable quantum billiard in the hyperbolic plane.

(ii) To investigate the statistical properties of the energy levels with respect to predic-
tions of separable systems and the semi-classical theory of Berry for the spectral
rigidity. ‘

(iii)To compare the resuits with a typically chaotic model (the regular octagon) in the
hyperbolic geometry.

We obtained quantization condltlons for the momentum (k,; fixed)

even: Puf,':-l/z(sin Y, + Pl'fl 1j2{—sinYy) =0 4.1
odd: 1k.-12(3m Y, - P:,f"‘_”z(u sinYy) =0 4.2)

for even and odd parity, respectively, which are transcendental equations.

For the four parity classes, with Dirichlet- and Neumann- boundary conditions,
respectively, at the lines X = 0 and Y = 0, the number of levels for a given fixed
energy E are # N(==) < # N+ ¢ #N“’r‘) < # N+ 4], The ground states for
the four parity classes are E("' +) = 2.4360, E( *) = 4.8094, E“"') = 5.6255
and F,(. =) = 7.5219, respectively, with F‘(+ +) as the lowest lving level. We have

approximately Ey ) < E( ) E(+") < E§7) (N fixed) for all levels. These
features make rcasonable sense due to the general properties of quantum systems,
ie. the ground state is always an even state, etc. We also noted the proximity of the
lowest lying levels of our system to the lowest lying levels of the regular octagon with
periodic boundary conditions. However, the statistical properties of the energy levels
of our integrable billiard systems compared with the analysis of the chaotic properties
of the octagon show no relation to each other. For example, the level statistics for
4 pgeneric octagon iS GOE, ie. obeying a Wigner distribution, the spectral rigidity
does show saturation but the growing behaviour of A, is different. Furthermore
the regular octagon is highly symmetric, a property which gives rise to many exactly
degenerate energy levels (i.e. the ground level is threefold degenerate). Nothing
of these features can be found in our system and no information achieved in the
integrable billiard survives in the transition to the chaotic system (compare also the
results of [13,24] with each other).

Our results were furthermore checked by Weyl’s law N(E), and further statisti-
cally analysed by the level distribution P(S), the integrated level distribution 7(S),
the number variance £?(.S) and spectral rigidity A4(S). The level distributions
P(5) showed a closely Poisson-like behaviour with reasonable confidence levels for
each parity class. However, the level distribution of the entire square containing all
parity classes was very poorly Poisson-like with almost negligible confidence levels, in
particular there are too many almost degenerated levels. Also the integrated level
spacing statistics shows significant deviations. A similar effect was observed in [32]
for another integrable billiard system. These rather large fluctuations of the level
spacing statistics indicate that the energy level sequence is not completely random
as in an uncorrelated Poisson eigenvalue sequence. Therefore the discrimination of
the energy levels with respect to symmetry classes are indispensible in the statistical
analysis of energy levels, a well known feature.

In the case of Dirichlet-Dirichlet boundary conditions the evaluated behaviour
for the spectral rigidity (alternatively, the number variance) could be explained by
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the semi-classical periodic orbit theory of Berry. We found for small values of L the
universal L/15-behaviour and saturation for L > L, ,,. We found that the number
variance showed precocious saturation, whereas the rigidity showed slow saturation.
Ly and A could be calculated by some assumptions about the geometry of our
system and theoretical and numerical results were in satisfactorily agreement. For
the entire square we found L_, =~ 55, Ao ~ 29197 and AW™ ~ 3.118,
where ATS™ was determined by an appropriate fit. The theoretical prediction of
the spectral rigidity and the numerical results were in close agreement. It is quite
satisfactory that the semi-classical theory of Berry for the spectral rigidity is applied
in a straightforward and simple way.

I also discussed where the integrability comes from. Transforming the rectangle
into the Poincaré upper half-plane or onto the Poincaré disc distorts it significantly
and no simple treatment secems obvious, let alone integrability,. However it is known
that integrability and non-integrability are connected with the long-term behaviour
of orbits, ie. whether they have positive Lyapunov exponent, which depends on the
focusing and defocusing behaviour of the boundaries. A genuine hyperbolic square
tesselating the hyperbolic plane has geodesics as boundaries with curvature zero,
however the space is negatively curved everywhere. The hyperbolic rectangle as in-
vestigated is realized in the same geometry but has only two geodesics as boundaries.
The remaining two (horizontal straight) line have positive curvature, therefore effec-
tively annihilate the chaos-creating negative curvature property of hyperbolic space.
Note that the hyperbolic squares, as generated by the matrices (2.7), compare fig-
ures 1(a—c), tesselate the hyperbolic plane only in the case of No = 27 with « as in
equation (2.8), NV € N, and the Riemann surface interpretation is not valid for these
squares.

The model of a ‘rectangular approximation’ of regular or irregular octagons must
be considered as not successful, and it remains doubtful whether integrable approxi-
mations are able to give information of a suitable corresponding chaotic system at all.
However, the present model is a further example of a non-trivial billiard system, in
particular the fact that it is a billiard in the hyperbolic plane, a space with everywhere
constant negative curvature.
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