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Energy-level statistics of an integrable billiard system in a 
rectangle in the hyperbolic plane 
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Miramare, Italy 

Received 19 Feburary 1992 

AbstrPeL A separable billiard V l e m  in the hyperbolic strip, a panicular realization 
of the hyperbolic plane, is investigated. W mnsidcr a rectangle bunded by straight 
lines in the hyperbolic strip as an approximation of either a regular onagon with area 
A = 4r, or of a hyperbolic Actangle bunded Ly geodesics, respectively. Due to the 
simple geometry of our approximation the Schmdinger equation is separable, and l a d s  
to simple uanscendental equations for the eigenvalues in terms of Legendre functions. 
The statistical properties of the eigenvalue spectrum are investigated and checked, with 
respect to Weyl's law, level spacing, number variance and spectral rigidily, respectively. 
In particular the numerical results for the spectral rigidity are in close agreement with 
the semi-classical theory of Bey. 

1. Introduction 

In recent years billiard systems have become increasingly popular. This is, of murse, 
due to the accessibility of more powerful computers. Of special interest have been 
systems which allow the considerations of trace formulae. Let us mnsider a two- 
dimensional system. Tike a test function h ( p )  = h(-p), decreasing faster than 
l / lplz for [ p i  + CO and which is holomorphic in some appropriate strip Im(p). 
The motion of a classical particle in this two-dimensional system can described by its 
orbits. The trace of the propagator of the mrresponding quantum system means that 
(in the sense of the semiclassical approximation) only the periodic orbits are relevant. 
Such trace formulae (Gutmiller [l]) have provided powerful techniques in analysing 
the classical and quantum properties of chaotic billiard systems (see Riedrich and 
Wintgen [2], Sieber [3] and Sieber and Steiner [4] and references therein). 

In the study of such billiard systems on Riemann surfaces, i.e. on compact polygons 
on the Poincar6 upper half-plane 71 (Labachevsky plane, hyperbolic plane) one is 
naturally led to the Selberg trace formula [5,6] which is, however, an exact formula. 
Endowed with periodic boundaly mnditions these systems are highly chaotic (ergodic) 
and serve as an important example in the study of quantum chaos (quantum chaology 
[7]). Aurich et a1 [8,9] have achieved for these particular systems a great deal 
of understanding, such that these systems can be understood as being numerically 
solved, including coming closer to an answer to the question 'Can one hear the shape 
of a drum?' [lo, U]. Another important billiard system is Artin's billiard, which has 
an application in the theory of the early universe [12]. Here similar results muld be 
obtained [13]. 

0305.4470/92/174573+22$04.50 @ 1992 IOP Publishing Ltd 4573 



4514 Ch Grosche 

In this paper I want to study a particular approximation of a hyperbolic polygon 
in the hyperbolic strip (see figure 1). It is constructed as follows. Let us start with 
the Poincark upper half-plane which is defined as 

8 = {C = z + i y l z  E R , y  > 0 )  (1.1) 

endowed with the hyperbolic metric d sz  = ( d Z z  + dzy)/yz.  By means of the Cayley 
transformation 

-iz + i - C + i  
z+l C + i  C=- z = z1 +, izz  = - 

the Poincar.5 upper half-plane is mapped onto the Poincare disc with metric gab = 
[2/( 1 - ?)] diag( 1, rz)  (rz  = zt + z;), and by means of 

1 1 = X + i Y = - l n ( - i C ) = 2 t a n - ' z  (1.3) 

onto the hyperbolic strip with metric gob = 6 a b /  cosz Y .  

three considerations. 
(1) Hyperbolic spaces can serve as a model in cosmology [12,14]. 
(2) Hyperbolic spaces play an important role in string theory [15], in particular in the 

mathematical theory of Riemann surfaces required in the multiloop expansion 
(D'Hoker and Phong [16]) in the Polyakov approach 1171 to perturbation theory. 

(3) Motion in hyperbolic space in (compact or non-compact) domains with periodic 
boundary conditions serves as an example for quantumchaos (Gutmiller 1181, 
Steiner [19]). 
Usually the classical motion in a finite domain in hyperbolic geometry is chaotic. 

Consequently the quantum motion reflects some of the chaotic properties of the 
chaotic classical motion, e.g. there is in general level repulsion. However, are there 
simple models which are nevertheless separable and resemble some properties of 
hyperbolic space? Let us for example consider the motion in a bounded domain 
in a hyperbolic geomey  where the boundaries are geodesics (with zero curvature). 
The everywhere negative curvature of hyperbolic space now causes that near lying 
geodesics to diverge exponentially in time evolution, i.e. they have a positive Lya- 
punov exponent. This means that the property of the space defocuses the classical 
trajectories (e.g. [20,21]). However, if it is possible to choose boundaries which have 
a focusing property then it may be possible that the defocusing property of the hyper- 
bolic space and the focusing property of the boundaries interact in such a way that 
the system remains separable and non-chaotic. The billiard system presented in this 
paper has exactly this property. 

From the particular form our rectangle in the hyperbolic plane has, one could 
hope to gain some information about the (at least ground state) energy levels of the 
(classically chaotic) hyperbolic octagon with periodic boundary conditions. However, 
Aurich et a1 [8,9] have actually solved the corresponding Schrodinger equation nu- 
merically for symmetric as well as asymmetric octagons [9] and therefore one can 
only compare results now and see if the integrable system resembles some properties 
of the chaotic one. Furthermore, there is a numerical study of hyperbolic triangles 
embedded in the regular octagon in the Poincare disc with Dirichlet and NeumaM 

The study of classical and quantum motion in hyperbolic spaces emerges from 
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boundary conditions;respectively, by Balazs ei a1 [22, U]. Nevertheless the idea re- 
mains to study billiards in unusual settings, e.g. the one presented here which serves 
as an example of a separable quantum billiard hyperbolic geometry, see also Gra- 
ham et a1 [24] for an integrable approximation of a cosmological billiard (Artin's 
billiard). 

The further contents of this paper are now as follows: In section 2 I will describe 
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the 'rectangle approximation' in some detail and set up the quantization condition. 
Weyl's law for the various parity classes, respectively Dirichlet and Neumann boundary 
conditions, are formulated in order to check the increase of the number of energy 
levels with increasing energy. 

Section 3 contains the numerical results and an investigation of the statistical 
properties of the calculated energy levels. 

The forth section contains a discussion and a summary. 

2. The system 

Let us start with a description of the system which I call 'a rectangle in the hyperbolic 
plane'. In figures l(a-c) I have displayed how the rectangle in the three realizations 
of the hyperbolic plane looks alike. In the hyperbolic strip it consists of two vertical 
straight ihes which are geodesics (solid lines), and two horizontal straight lines which 
are not geodesics (dotted lines). In figures l(b) and l(c), respectively, it is also 
displayed how this rectangle looks like in the PoincarB upper half-plane and the 
Poincar.5 disc (dotted lies), respectively, and how the hyperbolic strip, the Poincar.5 
upper half-plane and disc are tessalated by the symmetric octagon and hyperbolic 
rectangles (see below), respectively. 

I also have displayed the regular octagon which corresponds to a Riemann sur- 
face of genus two, the simplest Riemann surface tessclating the hyperbolic plane. 
The regular octagon can be conveniently constructed in the Poincark disc with eight 
quartercircles described by [22] 

r - +cos a (9 \ & 2 /  = ( --i 'cosn \ / 
(2.1) 

- - L < a < l  
4 k  k 4  

which give rise to the eight generators of the symmetric octagon in the Poincar.5 disc 
[&9,221 

including the inverse Y;', with cosh 9 = cot E 8 -  - 1 + 4 = 2.414213562. .  .. 
Lo is the length of the shortest closed periodic geodesic in the regular octagon [8]. 
From the geometv is it clear that the area of a rectangle in the hyperbolic .. strip is 
given by 

-(X,-X,,)(tan&-tanY,) (2.3) 

with some numbers (X , ,  X b ,  Y,, Yb). Since the vertical lines coincide with the 
corresponding lines of the regular octagon, we choose as - X ,  = X ,  = L o / 2  with 
Lo given by 

Lo = 2111 (' +JJ2-1) = 3.057 141 8 3 9 . .  
1 - m  

(2.4) 
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From the definition of a rectangle [ - L , / 2 ,  Lo/2] x [-Yo,Yo] we have several pos- 
sibilities in choosing a particular one. One can either choose for y0 the p i n t  Ya 
given by the right upper corner of the octagon, the point YB given by the maximum 
value of the variable Y the octagon takes on in the strip, the point Yc given by the 
minimum value of the variable Y the octagon takes on in the strip, OT by some inter- 
mediate value YM given if the area of the rectangle equals, say A = 4a. Whereas 
the separability of the rectangle in the hyperbolic strip is obvious, the separability in 
the PoincarB upper half-plane and the PoincarB disc, respectively, is not so obvious. 
However, SO” particular polar coordinate systems ( T ,  6) do exist 

Explicitly these values are given by 

Ya =tan - ’  (A) = 1.143 717 740.. 

YB =tan - ’  (5;) = 1.384478273... 

Yc=tan-l  ( d E T i - J Z i ( c o s w - s i n w )  1 - Jz + cosw = 0.944 946 256. . 

= -0.307422594.. (d- l)d6 - 2fi-  2 ( 7 - 2 4  
w = sin-’ 

Y M = t a n - ’ ( E )  =1.117959030. .. . (2.5) 

we have Yc : Y, : Ya : YE. The two hor;.zontr! !in= i!? figxe I@) nf *e 
rectangle are not geodesics. It is nevertheless possible to construct a hyperbolic square 
bounded by geodesics. We consider the rectangle in the PoincarB upper half-plane 
and look for the arcs of a circle connecting the p i n t s  C A  = eL0/’(sin & + i cos yo)  
and Ck = e-Lo/z(sin Yo + icos yo).  The circles described by (z + z?)’ + yz = T’ 

with 

sin’ Y,, 
cosh 9 
sin Yo 

Xr = - T =  

do the job. The emerging domain in 7f can be seen as generated by the matrices 

/ & a l l  0 \ 
71 = \ -  0 e-Lo/z) 

(2.7) 
1 cosh $ sin Yo 

” =  4- cosh la - sin’ y0 s i n &  cosh% 

On the left-hand side in figures ~(a-c)  i nave aispiayea the action of appiying the 
boosts of equation (2.2) to the fundamental domain of the regular octagon. Also 
shown is the ‘rectangle approximation’. On the right the two-fold action of the 
generators of equation (2.7) h shown. Due to the general formula for a polygon 
in the hyperbolic plane A = [ (V - 2)a - a], where V denotes the number 
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of vertices and a the corresponding angles (e.g. [22]), we get for the area of the 
hyperbolic square generated by the matrices (27) 

sin ZY, 
a = Yo + tan - '  

eLa - 1 
( J  2eLo(z :  + r-2) - e2Lo - 1 

which gives a = 0.490923447 ..., A = 4.319491516..  . for Yo = YM with the 
parameters zy = H . 6 8 4 8 1 8  1 1 7 . .  ., f = 2.491 635672. .  ., respectively. We can 
not expect that the ground state energy levels for the hyperbolic squares should be of 
"parable size with those of the square and the octagon due to the large difference 
in their geometry and area << 4rr. 

A = 4 tan-' 

For reasons of practicability and simplicity we now make the choice 

and denote by the notion 'rectangle in the hyperbolic plane' the rectangle in the strip 
bounded by the four straight lines as described above. 'hiis particular choice makes a 
reasonable compromise as to the total number of levels which can be calculated within 
the region of stability of the numerical investigation by a simple Fortran program. 
Also the width and length along the X- and Y-axis of this square are almost equal. 

In order to set up our quantization mnditions and Weyl's law we must discrim- 
inate between four parity classes in the hyperbolic rectangle and the lengths of its 
boundaries. The rectangle is symmetric with respect to the X- and Y-axis, hence we 
get the four classes Pl = (+,+), P2 = (+,-), P3 = (-,+) and P4 = (-,-). 

Let us set up the quantization condition. The free wavefunctions in the entire 
strip are given by [25] 

p sinh ~p cos Y 
4 d ( c o s h Z  rrk + s inh ' i~p )  

e ikX p i p  ,k-l/2(sin y, Qp,k(x?y) = 

which are normalized solutions of the Schrijdinger equation (h = 2m = 1) 

- c o s 2 Y ( a ~ + a ~ ) Q ( X , Y ) =  E Q ( X , Y ) .  (2.11) 

The energy spectrum is E = p2 + f and I have used dimensionless units. Even and 
odd panty with respect to the X-coordinate yield the quantization condition with 
respect to the Xdependence 

cos L,k, = 0 + k,  = (2.12) 
2 LO 

even: 

s i n L , k l = ~ + k  -- 2rrl 
2 I -  Lo odd 

Even and odd parity with respect to the Y-coordinate then give the quantization 
m n d i ti o ns 
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The last two equations are transcendental equations for p , ,  n = 1 , 2 , .  . . and must 
be solved numerically. Actually one uses the representation 

qf-l,z(sin Y) = 1 (1 + s i n  Y)~'" 
T(1-ip)  1 - s i n Y  

1 - sin Y 
2 

(2.16) 

and omits the l/r(l - ip)-factor. The energy of the nthlevel linally has the form 

E,, = p: + $. (2.17) 

Let us fint concentrate on the (-,-) case, the others are similar, of course. 

the mean of the number of energy levels up to. a certain. energy, ie. g ( E )  = 
{#N(levels with energy E) E < EN). According to Baltes and Hilf [27] and 
Stewartson and Wdechter [28] (for earlier results and generalizations see Ba1te.s 
[29], Brownell [30], Kac [l l]  and Waechter [31]) one obtains for a two dimensional 
quantum system with Dirichlet boundary conditions on all boundaries (e.g. following 

X l l a  h.n.n, A - - fnr V - V ..r ,.a.., n - I I  ,U, '0 - 1 M iE a!! p;ig c!asses. ?5cy!'s !iT* pq k%xibs 

[q 2Aj) 

m ( E ) = - E - - O + -  A a A  1 (L-3) 
24 cornera = 4 n  4rr 

Here ay denotes the angle of the rth corner, A the area of the system and a A  the 
length of its boundary. Here I< is the Gaussian curvature (here K = -l), d 2 a  the 
surface integral, and the boundary mean cuwature K is given by 

(2.19) 

n(s),t(s) is the normal (tangential) vector along the boundary, and the mvariant 
derivative D/Ds is given by 

D 
Ds n(s) = -2 t " (s )g , * (s ) -nb(s ) .  

d dn' dtb  dnc 
--n D . l  (s) = -- + m s ) x x 3  Ds ds ds 

(2.20) 

riC is the Christoffel symbol. In the case where one considers the shifted Laplacian 
-A - 1/4 the E-independent terms in "(E) change into [23] 

eo = (5 - 3)  + &/L I C ( o ) d z a  - - f tc(s)ds (2.21) 
96rr  8 A  24 cornen 

This suffices for our purposes. Using the general formula for the length of a curve 
in a curved space 

(2.22) 
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we obtain for the length of the boundary of a quarter rectangle 

a a = 2 l n (  1 + sin Yo )+$(I+-).  1 
cos Yo cos Yo (2.23) 

Note that the vertical lines are geodesics and therefore their length can also be 
evaluated by the two-point formula in the strip 

cosh(X" - X')  
cos Y' cos Y" 

cosh d(q",  4') = - tan Y' tan Y". (2.24) 

We have a, = rr/2 (T = 1,2 ,3 ,4)  and therefore for the (X, Y) (odd, odd) states 

N( E)(- ! - )  2 tan yo E - - dE [ 2 In ( j + $(I + &j] 8rr 4rr 

(2.25) 1 1 L o t a n y o  
192 cosz Yo +--,+ 4 

where we have allowed some arbitrary Yo. Similarly for ( X ,  Y) (odd, even) states 

1 Lo tan Yo 
48 + 192 cosz Yo ' 

- _  

For ( X ,  Y) (even, even) states 

For the entire square, of course, we have 

Hence the odd parities in X and Y, respectively, give Dirichlet boundary conditions 
on the lines Y = 0 and X = O? respectively, and even parities X and Y, respectively, 
give Neumann boundary conditions on the lines Y = 0 and X = 0, respectively. 
Of course, the Schrddinger equation restricted to our particular rectangle iS not 
invariant with respect to translations in the Ydirection (it is in the Xdirection). 
The Schrodinger operator is only invariant with respect to elements of a Fuchsian 
group, ie. generators of hyperbolic polygons tesselating the hyperbolic plane. 
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3. Numerical results 

The following table shows the first 25 levels for the parity classes (-,-), (-, +), 
(+,-) and (+,+), respectively. The last figure may be uncertain. The energy 
levels are ordered according to increasing energy, of course, and in addition I also 
display the corresponding quantum number-pairing ( I ,n)  arising from the X- and 
Y-quantization condition of the transcendental equations for p,, respectively. 

A more comprehensive list of energy levels shows that we have level cluster- 
ing (degeneracies or almost degeneracies) which are expected for separable systems 
(compare the short enumeration in table 2). There is also an asymptotic behaviour of 
the Legendre functions which give for p --t 03 and fixed k, the solution of equations 
(2.14) and (215) (independent of k,) 

-1  1 + sin Yo 
1 - sin Yo p ,  = 2irn [In ( )] = 2.139 942066 . .  . (n EN, p ,  - m) (3.1) 

which is n h l y  confirmed by the data. 

E1 = 7.5219(1,1) 
EZ = 14.638(2,1) 
Ea = 21.340(1,2) 
E, = 25.131(3,1) 
ES = 29.366(2,2) 
E6 = 38.038(4,1) 
E? = 42.999(3,2) 
ES = 44.220(1,3) 
E, = 52.118(2,3) 
El0 = 53.020(5,1) 
E11 = 61.589(4,2) 
E,, = 65.593(3,3) 
E13 = 70.000(6,1) 
El4 = 76.269(1,4) 
EM = 83.689(5,2) 
EIS = 84.107(2,4) 
E17 = 85.049(4,3) 
EIS = 88.931(7,1) 
E19 = 97.349(3,4) 
EZO = 108.24(6,2) 
E21 = 109.80(8,1) 
Ea1 = 110.55(5,3) 
Ea3 = 116.27(4,4) 
Ea, = 117.48(1,5) 
E25 = 125.29(2,5) 

~ 

El = 4.8994(1,1) 
E2 = 13.368(1.2) . .  , 
E$ = 13.672(2,1) 
EA = 22.071(2,2) 
EI, = 24.992(3,1) 
E6 =31.633(1.3) 
E, = 38.026(4; 1) 
Eg = 38.366(3,2) 
Es = 39.596(2,3) 
El0 = 53.019(3,3) 
El1 = 53.445(5,1) 
El2 = 59.099(1,4) 
E13 = 60.084(4,2) 
El,  = 66.961(2,4) 
Els = 69.996(6,1) 
E16 = 74.736(4,3) 
E17 = 80.296(3,4) 
Els = 83.451(5,2) 
EIg = 88.931(7,1) 
G o  = 95.729(1,5) 
Ea, = 99.500(4,4) 
Ea? = 103.55(2,5) 
E23 = 104.65(5,3) 
El,  = 108.22(6,2) 
E25 = 109.80(8,1) 

~ ~~~ ~ 

El = 5.6255(0,1) 
E2 = 10.575(1,1) 
Ea = 19.373(0,2) 
Ea = 19.539(2,1) 
E5 = 24.656(1,2) 
Eo = 31.315(3,1) 
E? = 35.493(2,2) 
Ea = 42.267(0,4) 
Eg = 45.277(4,1) 
Elo = 47.493(1,3) 
El ,  = 51.760(3.2) . - ,  ~. 
El2 = 58.134(2,3) 
El3 = 61.261(5,1) 
El,  = 72.287(4,2) 
El,  = 74.321(0,4) 
E16 = 74.552(3,3) 
El7 = 79.220(6,1) 
Els = 79.525(1.4) 
E l ,  = 90.038(2,4) 
Em = 95.691(5.2) . . ,  ~. 
El ,  = 97.078(4,3) 
Ell = 99.126(7,1) 
E,, = 106.08(3,4) 
E2, = 115.54(0,5) 
E?, = 120.73(1.5) 

~~~ ~ 

El = 2.4360(0,1) 
E2 = 8.7781(1,1) 
E, = 11.365(0,2) 
E, = 16.848(1,2) 
E, = 19.136(2,1) 
E, = 29.283(2,2) 
E7 = 29.675(0,3) 
Eg = 31.272(3,1) 
Eg = 34.925(1,3) 
Elo = 45.274(4,1) 
Ell = 45.723(2,3) 
El2 = 48.841(3,2) 
E13 = 57.149(0,4) 
El4 =61.261(5,1) 
El5 = 62.362(1,4) 
El6 = 63.008(3,3) 
E n  = 71.645(4.2) 
EIS = 72.926(2,4) 
EIg = 79.220(6,1) 
E20 = 88.740(4,3) 
Ezl = 89.131(3,4) 
E,, = 93.783(0,5) 
E23 = 95.610(5,2) 
Ez, =98.981(1,5) 
,325 = 99.126(7,1) 

For E,,,,, < 1000 we have # N ( - * - l  = 229, #PI(-,+) = 237, #NCC*-) = 240, 
# N ( + - + )  = 246. n e  ground states for the four parity classes are I$+'+) = 2.4360, 
Eh-") = 4.8994, E r ' - )  = 5.6255 and Eh-'-) = 7.5219, respectively, with E r ' + )  
c& ;he ;wwes; tyiiig 
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Note the proximity of the lowest three eigenvalues to the lowest two eigenvalues 
E r t  = 3.8388, EYt = 5.353 of the regular octagon [SI (which are however three- 
fold and fourfold degenerate, respectively). The additional corners in the hyperbolic 
plane of the regular octagon hence do not increase the value of its ground state too 
significantly which is due to A°Ct = 47r. 

The check with Weyl's law confirms the data nicely down to the lowest eigenvalues. 
The staircase (or step function) N ( E )  (solid line) and Weyl's law (dotted line) are 
hardly distinguishable. See figure 9 for an enlargement. Let us consider 

6, = #(levels) - n ( E )  - 0.5. (3.2) 

The accumulated mean values of 8 (solid line) are consistent with zero, with fluctua- 
tions 181 = 0(10-*) about zero as shown in figure 4. Note the large fluctuations 6,, 
(dotted lines) of the actual step function about the mean value described by Weyl's 
law. This feature of large fluctuations is well known in integrable systems. Chaotic 
systems are typically smoother. 

In figure 2 I have displayed for all four parity classes the step function and the 
corresponding Weyl's law, respectively. 

N ( f I  
25110 
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lbbk 2. Some almost degenerate energy levels 

4583 

E ~ > - ) ( J , " )  E $ , + ) ( I ,  n) E e , - ) ( l , n )  E'$'+'+'(I,n) 

E z p  = 141.10(6,3) E84 = 366.57(8,7) E80 = 269.68(9,3) E,, = 144.68(9,1) 
E30 = 141.25(5,4) EM = 366.62(9,6) Eel = 269.87(7,5) E35 = 144.77(1,6) 
Eo5 = 299.14(9,4) E38 = 160.00(5,5) E82 = 363.00(8,6) Em = 252.58(6,6) 
E86 = 299.19(12,2) E37 = 160.11(7,4) E83 = 363.15(16,1) E a  = 252.60(7,5) 
E92 2 421.21(15,2) Ess = 421.21(15,2) E136 = 586.29(3,11) E88 = 363.11(3,9) 
Eg3 = 421.32(18,1) Em = 421.32(18,1) ElJT = 586.37(18,2) Em = 363.15(16,1) 
E131 = 577.84(3,11) Ells = 507.87(1,11) El40 = 573.33(11,7) 
E132 = 577.93(13,5) Ells = 507.88(6,10) El41 = 573.37(21,1) 
Ela3 = 586.72(7,10) El21 = 515.93(2,11) El74 = 716.31(6,12) 
E134 = 586.84(9,9) E122 = 515.99(12,5) E175 = 716.35(18,3) 

. 

6" d" 
2.0 

111 

0.0 

-1.0 

-2.0 c 1 
0.0 2000 kO0.0 600.0 800.0 1000.0 0.0 2w.o ,000 6000 800.0 lW0.O 

A Erst analysis now gives the levelspacing distribution P ( S )  of spacing behveen 
neighbouring levels. Classically integrable systems belong to the universality class of 
uncorrelated level sequences. P ( S )  is calculated for the scaled energy spectrum, 
which has a mean level spacing of one (= tr). One applies Weyl's law onto the 
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calculated energy levels and obtains the normalized levels E:, by 

E:, = N (  E,) (3.3) 

and quantities for the scaled spectrum are denoted by a prime in the following. In 
integrable systems one typically has level clustering, which is expressed by P( S) -t 1 
as S -t 0, whereas chaotic systems show level repulsion, i.e. P ( S )  + 0 as S + 
0. The functional form of the nearest neighbour level spacing P ( S )  for classically 
integrable systems has the form 

P( S )  = e-' (3.4) 

which is a Poisson distribution, whereas the result from random matrix theory for the 
level spacing distribution of a GOE ensemble is approximated by a Wiper distribution 

T 

(3.5) P ( S )  = -Se-"S2/4 
2 

and the corresponding level spacing distribution of a GuEensemble is given by 

(3.6) 

Figure 4 shows the analysis of our system and the consistence with a Poisson distri- 
bution (dotted line) is evident. The corresponding level spacing distributions for GUE 
(Gaussian unitarian ensemble) is denoted by the dashed line, and for GOE (Gaussian 
orthogonal ensemble) by the dashed-dotted line. Clearly GUE and GOE distributions 
are excluded. 

a1 [32] for the flat rectan- 
gular billiard. With the chosen AS, the actual level distribution shows never- 
theless fluctuations about the Poisson distribution. Making A S  smaller would in- 
mease these fluctuations. The calculated Xz-test gives values for A S  = 0.2 (0.1) 
xz = 30.8 (57.2) (odd,odd), xz = 36.6 (56.0) (odd,even), x2 = 19.6 (47.5) 
(even,odd), and xz = 28.1 (54.1) (even,even), respectively, which gives confidence 
levels a = 0.17 (0.23) (odd,odd), a = 0.05 (0.26) (odd,even), a = 0.71 (0.57) 
(even,odd), and a = 0.26 (0.33) (even,even), respectively. This shows that the 
actual distribution is reasonable Poisson. Note the difference to e.g. [32] where in 
spite of the fact that there were some 100 times as many energy levels taken into 
account, the emerging level statistics had negligible confidence level. 

A similar feature was first observed by Casati 

We can also study the integrated level spacing 

I ( S )  = P ( t ) d l  (3.7) LS 
which yields a useful statistics even for a small sample of level spacings. This gives 

(3.8) TS'1.4 I,,,( S )  = 1 - e -  s h,iSson(S) = 1 - e -  

and a non-analytical expression for I,,,( S). Figure 5 shows good confirmation of 
the data with Poisson distributed energy levels. 



1.0 

0 8  

0.5 

0.4 

0.1 

0.0 

Integrable billiard in the hyperbolic 

0 8  

11.6 

0.4 

0.2 

0.0 

plane 

PlSl  

4585 

Lcrel "pOC8"g iC"W Odd) ,no, "Oclng i..en.a"c") 

Figure 4 Nearest level spacing distribution P ( S )  for the four palily classes. i.e E(- , - ) ,  
E(-,+) (lop), E(+*-) and E(+.+) (bottom). 

The level spacing distribution P( S) is a short range statistics. Another important 
tool in the analysis of the spectrum i$ the number variance E'( L )  and the spectral 
rigidity A3(L)  [33], respectively. C ' ( L )  is defined as the local variance of the 
number n( E', L )  of scaled energy levels in the interval from E' - L / 2  to E' + L / 2 .  
It has the form 

The A3 statistics of Metha and Dyson [33] is defined as the local average of the 
mean square deviation of the staircase from the best fitting of a straight line over an 
energy range corresponding to L mean level spacings, namely 

C z ( L ) =  ( n ( E ' , L ) - L ' ) .  (3.9) 

A 3 ( L ) = ( y i n L J L l 2  d c [ N ' ( E ' + c ) - a - b c ]  '> . (3.10) 
0) L - L I Z  

It can be expressed as 
rL.12 r L I 2  

A , ( L ) = ( L ]  ' d t N " ( E ' + c ) -  [l/ ' d e N ' ( E ' + e )  
L -LIZ L -LIZ 

(3.1 1) 
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Pigvrc 5. lnreglaled level spacing distribution I ( S )  for the four prity classes, 
i.e E(-*-), E(-,+) (lop), E(+.-) and E(+,+) (botlom). 

As the number variance, it characterizes long-term correlations of the energy levels. 
Both statistics are related by 

A , ( L ) =  - d s ( L 3 - 2 L 2 s - s 3 ) C 2 ( s ) .  (3.12) 
L4 sL 0 

Whenever L < 1, the very fact that N (  E) is a staircase leads in this limit to [35) 

Cz(S) = L A,( L )  = L / 1 5  (3.13) 

and both statistics are linear and show the so-called Poisson behaviour, Le. in the 
case of a genuine Poisson distributed level sequence, these results are exact. 

The spectral rigidity gives, therefore, no information about the very finest scales 
corresponding to the spacings between neighbouring levels, whether they are Poisson 

than the inner energy scale (L = 1) of a system. Berry [35] has developed a semi- 
classical theory of the spectral rigidity and has shown that one must discriminate 
between at least three universality classes of rigidity, depending on whether one deals 
with classically integrable systems or classically chaotic systems. The first universality 

&th:h!Jtp,C "' 1:s .*efc!fles. & the descrihps -q-enKs !zrgp,r 
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class occurs for classically integrable systems. Here the Poisson L/15-form for the 
spectral rigidity extends from L = 0 to L,,,. L,,, corresponds to an outer energy 
scale a 1/Tm,” (the inner energy scale corresponds to L = l ) ,  where T,,, is the 
period of the shortest classical orbit and L,,, a t iN-’ ,  and a l/fi for N = 2 
(i.e. a wo-dimensional system). The properties of the rigidity are determined by the 
contributions of the very short orbits. These orbits have a non-universal behaviour, 
which differ from system to system. As a consequence of the fact that there is a 
shortest orbit, the spectral rigidity Saturates and approaches a non-universal constant 
A, as L + 00 (and the same line of reasoning is true for the number variance Cz) 

The number variance for a GOE distributed sequences is given by [33,34,36] 
[3,9,351. I 

1 
2 2 

(3.14) 

2 {  

‘I 

c’ (L)  = 7 log(2nL)  + y + 1 + - Siz(nL)  - 2 s i ( r L )  - c o s ( 2 r ~ )  

- c i ( 2 n ~ )  + r 2 ~  1 - 2 ~ i ( 2 r ~ ) ] }  
[ n  

and for cuedistributed sequences [3,9,34,36], respectively, 

C z ( L )  = 7 Iog(2nL)  + y + 1 - cos(2nL) - Ci(2nL)  

(3.15) 

Results for the spectral rigidity are obtained via the relation (3.13). 
Let us consider the entire square in the hyperbolic plane. Rrst of all, we see 

that all predicted features in fact occur. The Xz-test however gives for P( S ) ~  x2 = 
77.9, x2 = 118 and x2 = 290 for AS = 0 2 5 , 0 2 0  and 0.10, respectively, with 
confidence levels of a = O(lO-’) and smaller, with respect to a Poisson distributed 
sequence which is negligible. Let us note that the superposition statistics according 
to [37l gives no improvement in the confidence level. 

The number variance and spectral rigidity approach their L- and L/15-behaviour, 
respectively, for L + 0. For L large, the number variance starts oscillating about a 
mean value and the spectral rigidity approaches a saturation value. This is true for 
all symmetry classes and for the analysis of the entire square as well. 

We can explain our results in terms of the periodic orbit theory of Berry [35]. 
Of course, Lo is the length on a closed periodic orbit which corresponds to motion 
along the X-axis. L ,  with L ,  =21n[ ( l  +sinY0)/(cos&)]  = 2.936147388 ... is 
the length of an orbit along the Y-axis and is slightly shorter than the former one. 
However, these two shortest closed orbits are almost equal such that we can apply 
Berry’s theory of the spectral rigidity in its simplest way. 

For a classically integrable system the spectral rigidity approaches for L > L,,, 
a value A, which is given by A, = constant x Ji‘, where E denotes the scaled 
energy range over which the spectral rigidity has been evaluated. In the case of a flat 
square with sides a = b = 1, A, can be evaluated as 

A, Y r-‘ / ’”[C(;)p($)  - i c ( 3 ) ] f i ~  0.0947Ji‘. (3.16) 

Similarly, L,,, Y m. According to e.g. [3,9] this gives a prediction for the 
number variance C z ( L )  for L > L,,,, Le. C, = 2A, + O ( l / L 3 )  (fluctuations 
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neglected, this behaviour explains why C2 saturates much faster than As, see below). 
Assuming now that our square can be further approximated by a flat square with sides 
a = Lo Y b = L , ,  we obtain the following quantities for the (odd,cdd) eigenstates 
of the square in the hyperbolic plane with # N  = 229 calculated energy values (Aw, 
C, are lower bounds) 

L,,, Y 27 C F y  Y 2.874 A F y  Y 1.437. (3.17) 

The numerical results are 

A:'" = 1.182. (3.18) 

with C z m  - 2 A z m  Y 0.09. Here Cgm is determined by taking the mean value of 
C ( L )  above L = 10. In order to determine A:"', a fit of the numerical result with 
the ansatz 

E"", Y2.454  

(3.19) 

is made with a = 0.0002081 and b = 43.90, respectively. In figures 6 and 7, I 
have indicated the theoretical values by dotted lines .and the numerical values by 
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dashed lines, respectively. The theoretical crossover value L,, Y 27 is clearly 
distinguishable, Le. where the L/15-behaviour changes into the saturation value. 
Considering the quite rudimentary approximations the results are very reasonable. 
Note that only for the (odd,odd) parity class statemens can be made, because this 
is the only pure Duichlet-Dirichlet billiard. We also see that in the (odd, odd) case 
the theoretical value is too large which shows that here our approximation of two 
almast equal shortest geodesics along the X- and Y-axis is not very good. The fact 
that A,( L )  becomes a very slowly increasing function for L -t 00 indicates that the 
level sequence becomes a rather regular sequence. From equation (3.1) we know that 
the sequence of energy levels for E - m is in fact a regular sequence and therefore 
rigid. 

Of course, we can repeat our considerations for the entire square with all parity 
classes. Here the predictions are 

-max 1. -5 .5  - -- p p Y  2 s,n'j -m AtheorY 2,92, (3.2q 

The numerical results are is the mean value for L > 20) 

E;"' Y 6.66 A:"' 2 3.118 (3.21) 
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and the fit parameters for A:"' are a = 4.650 and b = 170.24, respectively. Here 
E:'" - 2A;"' 0.43. In figure 8 I have indicated the theoretical values by dotted 
lines and the numerical results by dashed lines. All features are repeated. Whereas 
the agreement with the theoretical and numerical values for the spectral rigidity give 
very good results (compare the (cdd,cdd) case), the actual number variance lies 
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Tabk 3. The spectral rigidity and kny's theory 

N LmaX Athcory Amax A m . . / f i  Am Awl& 

4591 

100 17.1 0.947 0.825 0.083 0.825 0.083 
200 25.3 1.350 1.50 0,105 1.49 0.105 
300 30.6 1.634 1.82 0,105 1.85 0.107 
400 35.3 1.885 2.13 0,106 2.15 0.108 
500 40.0 2.118 2.29 0.102 2.32 0.104 
600 43.4 2.318 2.28 0.093 2.35 0.096 
700 46.9 2.503 2.25 0.085 2.35 0.089 
800 50.1 2.676 2.72 0.096 2.80 0.090 
900 53.2 2.840 2.85 0.095 3.10 0.101 
952 54.7 2.920 2.925 0.095 3.12 0.101 

W) 
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4000 v ! 
3600 f ' ' " ' '  , . I E  

4000 4500 5000 5500 600 0 

Flgure 9. Detail of W y Y s  law 

above the theoretical expectation. 
In table 3 I have listed the comparison with the numerical results for the spectral 

rigidity and the theoretical predictions B la Berry for the entire square. A maximum 
of 952 levels have been taken into account with E < 1000. In the first column I have 
indicated the number of energy levels N z E taken into account for the calculation 
of the spectral rigidity, in the second mlumn L,,, according to L,, z m, in 
the thud A, according to equation (3.16), in the forth the numerical result for 
the calculated maximum Amax = A,(lOO) of the spectral rigidity, in the fifth the 
resulting quotient of Amax and 6, and in the sixth and seven the analogue of 
the former two columns for the corrected numerical A,. Our numerical results 
are in agreement with Berry's the0 The mean value for A , , / d  is given by 
0.097f0.003, whereas for A,/$by 0.099*0.003, in excellent agreement with 
the theoretical value 0.0947. Note that A='" gives somewhat larger values, which can 
be explained by the fact that our rectangle in the hyperbolic geometry is a distorted 
geometrical object with only almost equal sides ( L o  Y L,, see above), whereas the 
semi-classical theory for the spectral rigidity of Berry deals with a flat square. 

Figure 9 shows an enlargement of the step-function. We can clearly see the 
excellent agreement with the prediction of Weyl's law. Also we can see the periodic 
fluctuation about it, a very typical feature of separable systems. 

4. Discussion and summary 

In this paper I have discussed a particular quantum billiard in the hyperbolic strip in 
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the form of a rectangle, consisting of two vertical and two horizontal straight lines. 
The motivation for an investigation of this model was threefold. 
(i) 'lb study a separable quantum billiard in the hyperbolic plane. 
( i )  'lb investigate the statistical properties of the energy levels with respect to predic- 

tions of separable systems and the semi-classical theoly of Berry for the spectral 
rigidity. 

(%)% compare the results with a typically chaotic model (the regular octagon) in the 
hyperbolic geometry. 
We obtained quantization conditions for the momentum (k, fixed) 

for even and odd parity, respectively, which are transcendental equations. 
For the four parity classes, with Dirichlet- and Neumann- boundary conditions, 

respectively, at the lines X = 0 and Y = 0, the number of levels for a given fixed 
energy E are # N ( - i - )  < # N ( - , + )  < #A'(+,-) < # N ( + * + ) .  The ground states for 
the four parity classes are E ~ S + )  t 2.4360, EA- '+)  = 4.8994, E:+'-) = 5.6255 
and ~~~~~ -" El-'-)  = 7:5219, respec!ive!y, with E6+'+) a the !owest king !eve!. Wc have 
approximately E!$") < EL") cz E!$'-) < EL'- )  (N fixed) for all levels. These 
features make reasonable sense due to the general properties of quantum systems, 
i.e. the ground state is always an even state, etc. We also noted the proximity of the 
lowest lying levels of our system to the lowest lying levels of the regular octagon with 
periodic boundary conditions. However, the statistical properties of the energy levels 
of our integrable billiard systems compared with the analysis of the chaotic properties 
of the octagon show no relation to each other. For example, the level statistics for 
a generic octagon is GOE, i.e. obeying a Wigner distribution, the spectral rigidity 
does show saturation but the growing behaviour of A, is different. Furthermore 
the regular octagon is highly symmetric, a property which gives rise to many exactly 
degenerate energy levels (i.e. the ground level is threefold degenerate). Nothing 
of these features can be found in our system and no information achieved in the 
integrable billiard survives in the transition to the chaotic system (compare also the 
results of [13,24] with each other). 
Our results were furthermore checked by Weyl's law m( E), and further statisti- 

cally analysed by the level distribution P( S), the integrated level distribution I (  S), 
the number variance C 2 ( S )  and spectral rigidity A,(S). The level distributions 
P( S)  showed a closely. Poisson-like behaviour with reasonable confidence levels for 
each parity class. However, the level distribution of the entire square containing all 
parity classes was very poorly Poisson-like with almost negligible confidence levels, in 
particular there are too many almost degenerated levels. Also the integrated level 
spacing statistics shows significant deviations. A similar effect was observed in [32] 
for another integrable billiard system. These rather large fluctuations of the level 
spacing statistics indicate that the energy level sequence is not completely random 
as in an uncorrelated Poisson eigenvalue sequence. Therefore the discrimination of 
the energy levels with respect to symmetry classes are indispensible in the statistical 
analysis of energy levels, a well known feature. 

In the case of Dirichlet-Dirichlet boundary conditions the evaluated behaviour 
for the spectral rigidity (alternatively, the number variance) could be explained by 
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the semiclassical periodic orbit theory of Berry. We found for small values of L the 
universal L/15-behaviour and saturation for L > L,,,. We found that the number 
variance showed precocious saturation, whereas the rigidity showed slow saturation. 
L,, and A, could be calculated by some assumptions about the geometry of our 
system and theoretical and numerical results were in satisfactorily agreement. For 
the entire square we found L,,, E 55, A F y  E 2.9197 and A=”’ = 3.118, 
where A=”’ was determined by an appropriate fit. The theoretical prediction of 
the spectral rigidity and the numerical results were in close agreement. It is quite 
satisfactory that the semi-classical theory of Berry for the spectral rigidity is applied 
in a straightfonvard and simple way. 

I also discussed where the integrability comes from. Pansforming the rectangle 
into the Poincare upper half-plane or onto the Poincare disc distorts it significantly 
and no simple treatment Seems obvious, let alone htegrability. However it is known 
that integrability and non-integrability are mnnected with the long-term behaviour 
of orbits, Le. whether they have positive Lyapunov exponent, which depends on the 
focusing and defocusing behaviour of the boundaries. A genuine hyperbolic square 
tesselating the hyperbolic plane has geodesics as boundaries with curvature Zero, 
however the space is negatively curved everywhere. The hyperbolic rectangle as in- 
vestigated is realized in the same geometry but has only two geodesics as boundaries. 
The remaining hvo (horizontal straight) line have positive curvature, therefore effec- 
tively annihilate the chaos-creating negative cumature property of hyperbolic space. 
Note that the hyperbolic squares, as generated by the matrices (2.7), compare fig- 
ures l(a-c),  tesselate the hyperbolic plane only in the case of NQ = 2 x  with Q as in 
equation (28), N E N, and the Riemann surface interpretation is not mlid for these 
squares. 

The model of a ‘rectangular approximation’ of regular or irregular octagons must 
be considered as not successful, and it remains doubtful whether integrable approxi- 
mations are able to give information of a suitable corresponding chaotic system at all. 
However, the present model is a further example of a non-trivial billiard system, in 
particular the fact that it is a billiard in the hyperbolic plane, a space with everywhere 

,/’ constant negative curvature. .-. 
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